


mathematics. In this section, we will briefly cover the history of Lisp
from its origin as a research paper to the current state of existing
Lisp dialects.

3.1 Concept for Lisp
Lisp as a programming language was developed by John McCarthy
in 1958 at the Massachusetts Institute of Technology (MIT) as part
of the Artificial Intelligence Project. McCarthy’s design was partly
influenced by the Information Processing Language (IPL) [14].
He published his findings in 1960 in the paper Recursive functions of
symbolic expressions and their computation by machine, part I3 [13].
It is considered to be the original paper on Lisp. His motivation
was to describe a language both as programming language and
as a simple formalism to build a Turing-complete language for
algorithms. He named this language LISP for "LISt Processor". His
intention was to build a theoretical foundation for Lisp, thus he did
not provide any implementation.

3.2 First Implementation
The original paper on Lisp included a definition of a Lisp function
called eval[e, a]— the universal Lisp function. A function in-
tended to compute the value of any valid Lisp expression e under
variable assignments a [13].

Upon reading the paper, Steve Russell — one of McCarthy’s
colleagues at MIT — understood that this eval function could be
the base of a working Lisp interpreter. He programmed it inmachine
code using punched cards, resulting in the foundation for running
Lisp programs [14].

This first version of Lisp served as a proof of concept and mo-
tivated the development of an improved Lisp interpreter that was
labeled Lisp 1.5. Following the publication of the LISP 1.5 Program-
mer’s Manual in 1962, many implementations of Lisp were written
for a variety of computers with different architectures [14].

3.3 Evolution of Lisp
Since there was no organization for standardizing the language and
little to no communication between the programmers, versions of
Lisp diverged more and more from each other. During this time
—in an effort to further improve the original language— works on
LISP 2 began.

By 1967 however, the difficulties of replacing Lisp 1.5 were too
great and problems in the development of Lisp 2 lead to the project
eventually getting abandoned [21].

Consequently, the branching of Lisp increased in the 1960s and
70s as illustrated in Figure 1. Notable dialects of that time were
Maclisp, ZetaLisp, InterLisp and Scheme. They eventually stopped
seeing usage with the exception of Scheme – a Lisp dialect that was
created by Guy L. Steele and Gerald Jay Sussman at MIT [21].

Attempts to unify the Lisp dialects into one language began in
the 1980s and 1990s. The new language was to be named Common
Lisp and aimed for rough compatibility with preceding dialects
while focusing on portability and consistency [20]. As a result of
this work the ANSI Common Lisp standard was published in 1994.

3Part II was never written, but "was intended to contain applications to computing
with algebraic expressions"

Figure 1: Timeline of Lisp Dialects [12]

4 SYNTAX AND CHARACTERISTICS
Naturally, dialects of the original Lisp took different approaches to
the specificities. The various examples in this paper will be written
in standardized ANSI Common Lisp. The goal of Common Lisp is to
extend Lisp with everyday conveniences that are aimed to make
the language more practical overall, while staying faithful to the
original vision and core syntax. As such, the simple code examples
in this section are valid code in all major Lisps.

An underlying characteristic of Common Lisp and other Lisps
that deserves mention is the use of garbage collectors, eliminating
the need for memory management. Furthermore, they are inter-
preted languages that commonly offer a Read-Eval-Print-Loop or
REPL as a terminal application that evaluates any expression given
to it.

4.1 Prefix-Notation and Expressions
There are two traits of the Lisp syntax that make any of its dialects
immediately stand out: The use of a prefix notation4 and a heavy
reliance on pairs of parentheses that can signify the start and end
of an expression.

An expression is either an atom, which is a word not surrounded
by parentheses (e.g. foo), or a list of expressions surrounded with
parentheses, separated by whitespace (e.g. (foo bar)) [10]. Ex-
pressions in Lisp are more precisely called symbolic expressions, or
s-expressions. We will give a more in-depth insight to them in 5.1. To
compute 3 + 2 in Lisp, one would write the following expression:
(+ 3 2)

In these expressions, Lisp expects the name of a function at the start
(+ in this case), followed by its arguments (3 and 2). These expres-
sions can be nested to arbitrary depth, resulting in the arguments
of the most inner expression getting evaluated first. A semi-colon
denotes a comment.
(+ 2 (+ 3 4)) ; evaluates to 9

However, to compute 2 + 3 + 4, we do not have to nest the
additions, since functions (such as +) can have a variable number
of arguments.
(+ 2 3 4) ; evaluates to 9

4also known as polish notation

2



There can be a limit for the number of arguments that can be passed
to such functions. According to the Common Lisp specification, this
limit is implementation dependent but must not be smaller than 50.

Together with the print function, a Hello-World program can
now be written as expected:

(print "Hello World")

4.2 Lists
The key datastructure of Lisp is the list. Lists are defined using
expressions like above, but if we were to define a list containing
all prime numbers up to 7, writing (2 3 5 7) would cause Lisp to
interpret 2 as a function and 3 5 7 as its parameters. In other words,
the expression would be treated as code [10]. To stop the expression
from being evaluated like a function and instead being seen as data,
we need to quote the expression: (quote (2 3 5 7)). Using an
apostrophe or single quote before an expression is shorthand for
the same operation: '(2 3 5 7).

To access and retrieve elements of a list, Lisp provides the func-
tions car and cdr. The former retrieves the beginning of the list,
while the latter returns the rest of the list.

(car '(first second third)) ; eval.: first
(cdr '(first second third)) ; eval.: (second third)

4.3 Variables and functions
Due to the simple syntax relying on just a few characters with
special meaning, a variety of characters is available for the naming
of variables, functions and symbols. For instance, following expres-
sion would declare a valid global variable named 1+!b*.-x?_=>Z
containing the value 42.

(defvar 1+!b*.-x?_=>Z 42)

Lisp programmers frequently make use of this freedom. For in-
stance, global variables are conventionally surrounded by asterisks.

(defvar *pi* 3.141)
(defvar *language* "Common Lisp")

Local variables can be declared with the function let. These vari-
ables are only valid inside of the body of the let function, meaning
the last expression after binding of the variables.

(let ((a 5)) (+ 1 2 a)) ; evaluates to 8
(let ((a 5) (b 2)) (+ 1 2 a b)) ; evaluates to 10

We can observe that variables do not need a type specification,
since Lisp is a dynamically typed language. Unlike strictly typed
languages, variables in Lisp thus can be assigned any type and lists
can contain any type:

; create a list with integer, symbol, string, float
'(4 abc "Alice" 3.141)

Analogous to variables defun and flet can be used to define global
and local functions. They both take the parameters of the function
in an expression as the first argument, and the definition of the
body in the second argument. The following function returns the
square of a given parameter x.

(defun square (x) (* x x))

4.4 Symbols
We previously mentioned the symbol datatype. This datatype seems
identical to a string, but they differ in their internal representation
and how they are compared. Symbols in Lisp are unique, while
the same string can be stored multiple times in memory. Symbols
can have values bound to them (such as strings) by using setf.
Evaluating a symbol then returns that value.
(setf foo 'test)
(setf bar 'test)

There are several functions to test for equality in Common Lisp. The
two most important ones are eq and equal. The former compares
two arguments on them being the same, identical object (i.e. they
point to the same memory address). The latter returns true if the
given arguments contain the same object. Knowing this, we can
now show off the difference between symbols and strings in code:
(eq foo bar) ; evaluates to true
(equal foo bar) ; evaluates to true

(setf foo "hello")
(setf bar "hello")
(eq foo bar) ; evaluates to nil (false)
(equal foo bar) ; evaluates to nil (false)

4.5 Conditionals
The concept of true and false in Common Lisp is implemented
via lists. An empty list evaluates to false, while a non-empty list
evaluates to true. With this in mind, we can now demonstrate the
usage of the special operator if that takes three expressions as its
arguments. The first argument is an expression that either evaluates
to false (the empty list) or to true (a list with at least one element).
If it is the latter, the if expression will then evaluate the second
expression, otherwise the third expression.
(if ()

(print "true") ; evaluated if true
(print "false")) ; evaluated if false

The empty list () in above expression can be replaced with ’() ()
’nil or nil, which are all synonymous in Common Lisp. It is worth
mentioning that this is not a uniform approach throughout Lisp
dialects: Scheme, for example, uses explicit symbols to represent
true (#t) and false (#f) [1, 2].

To avoid unreadable chaining of if expressions in a program,
Common Lisp provides the cond macro that can take a variable
number of arguments and can check an arbitrary conditional ex-
pression to determine which expression should be evaluated.
(setf foo 3)
(cond ((< foo 3) (print "Smaller"))

((= foo 3) (print "Equal"))
(t (print "Default")))

; Output: "Equal"

This code snippet exemplifies Lisp’s lazy evaluation: Every expres-
sion that is associated with a condition that appears after the first
true condition will not be evaluated. We can specify a default case
by providing the last condition with the "true" symbol t. So if none
of the conditions above it are met, cond is guaranteed to evaluate
the last expression.

3



Lisp introduced recursion, i.e. functions that can call themselves.
With this knowledge, we can now implement a function that calcu-
lates the Fibonacci number of n.
(defun fib (n)

(cond ((< n 2) n)
(t (+ (fib (1- n)) (fib (- n 2))))))

(fib 4) ; evaluates to 3

4.6 First-class functions
Functions in Lisp are first-class functions. In particular, this means
the language supports returning functions from other functions,
assigning and storing functions like variables and passing func-
tions to other functions —so called higher-order functions [1]. An
example for this is the commonly used function mapcar, which
takes a function as its first argument and a list to operate on as its
second. When evaluating, it will then apply the given function on
each element of the list.
(setf mylist (list '("hel" 24)

'("lowo" xyz "Bob")
'("rld")))

(mapcar #'car mylist) ; eval.: ("hel" "lowo" "rld")

The notation #’car is syntactic sugar for (function car). This
is a needed mechanism in Common Lisp because functions and
variables do not share namespaces – unlike Scheme.

4.7 Macros
Macros are pattern specifications that can range from simple text
replacements to defining new control constructs in a language.
Macros in Lisp are defined with defmacro and look similar to func-
tion definitions. The difference is that macros in Lisp do not get
evaluated, they get expanded into a Lisp expression.

A simple example for a macro is the following implementation
of an increment operator:
(defmacro 1++ (value) `(+ 1 ,value))
(1++ 1) ; evaluates to 2

The backtick character ‘ in Lisp can used for so called quasiquoting:
It returns the quoted list but evaluates all expressions that are
preceded with a comma.

5 PARADIGMS AND CONCEPTS
Lisp is a multiparadigm language. In particular, this means pro-
grammers can bend and extend Lisp to their liking and program in
a style that fits the desired paradigm [19]. For instance, Lisp allows
writing programs in a functional paradigm, but can not be consid-
ered a pure functional language by default, since Lisp functions
allow the occurrence of side-effects5 [14]. Furthermore, Lisp can be
extended with object-oriented programming features [9]. An exam-
ple for this is CLOS: the Common Lisp Object System that presents
an object-oriented extension to Common Lisp. CLOS introduces
concepts like classes, (multiple) inheritance, methods and generic
functions [9, 21].
5meaning a change of state in the program that is observable outside the local envi-
ronment of the called function

The reason for Lisp mutability lie in it being a programmable
programming language [8]. To be able to explain how the language
accomplishes this feat, we must first introduce the underlying key
concepts and ideas of Lisp.

5.1 Everything is a list
In Lisp, everything is composed of expressions as opposed to state-
ments. More precisely, these expressions are called symbolic expres-
sions or s-expressions. In his original paper, McCarthy defined them
followingly [13]:

(1) Atomic symbols are S-expressions.
(2) If 𝑒1 and 𝑒2 are S-expressions, so is (𝑒1 · 𝑒2).

With this knowledge, we can illustrate the s-expression (* 3 2)
as a tree data structure:

Figure 2: (* 3 2) as tree data structure

The whole language is structured as s-expressions, which ulti-
mately culminates in the concept of the next section.

5.2 Code as Data
The building blocks of Lisp are s-expressions and lists. Since lists
themselves however are defined as s-expressions and are struc-
turally identical, Lisp knows no hard boundary between code and
data. This leads to code and data both internally being represented
as abstract syntax trees. The eval function as mentioned in 3.2
takes in Lisp expressions and evaluates them. To be more specific:
it reads in Lisp programs expressed as Lisp data [14]. A most inter-
esting property of this is that Lisp can be written in itself [10]. This
concept is now referred to as homoiconicity.

5.3 Metaprogramming
Lisps lack of distinction between code and data explains its well-
fitted application for metaprogramming, essentially meaning the
technique of writing programs that write programs. Here is an
example of a macro that implements the cond operation out of
nested if’s and when’s:
(defmacro cond (&rest clauses)

(if (eq (length clauses) 1)
(if (eq (caar clauses) t)

`(progn ,@(cdar clauses))
`(when ,(caar clauses)

,@(cdar clauses)))
`(if ,(caar clauses)

(progn ,@(cdar clauses))
(cond ,@(cdr clauses)))))

4



This technique is so ingrained in the language that Lisp pro-
grammers are known to write domain-specific languages or DSL’s
for their problem area. The result is a language that is specifically
tailored to its area of application [5].

6 DEFINING LISP DIALECTS
We can now define what characterizes a Lisp dialect, and addi-
tionally explain how it is not only valid, but necessary, to refer to
these languages as dialects of Lisp, as opposed to talking about them
as languages that only draw inspiration from Lisp. We arrive at
following requirements for a Lisp dialect:

• Support of macros that are treated as first class citizens of
the language.

• Based around expressions as opposed to statements.
• A minimal syntax without special rules and edge cases.
• Functions as first-class citizens.
• Reliance on singly-linked lists as its primary datastructure.
• Usage of symbols.

By aiming to implement the above conditions —particularly the
requirement of a minimal syntax—, a language naturally will start to
resemble Lisp. Note that the use of a prefix-notation with delimiters
for its expressions (like parentheses) is not a requirement, but rather
a consequence.

Furthermore, it is now understandable why the concept of "C
dialects" is not a widely spread one. For instance, aiming to support
typical features of C in a language does not mean that such a
language will arrive at a C-like syntax.

7 USAGE
7.1 Artificial Intelligence
Lisp has its root in the research of artificial intelligence and was
the most popular language for A.I. programming [16]. The term
artificial intelligence was in fact coined by Lisp inventor John Mc-
Carthy himself [15]. The success of Lisp in A.I. is explained by the
field’s unusual requirements that could not be met by conventional
programming languages. The flexibility of Lisp turned out to be a
right fit for the demands that researchers at the time had [16]. In
fact, Lisp is still considered well-equipped for the task [3]. Another
discipline that Lisp proved to be the adequate tool for was fast
prototyping and experimentation [11] – in- as well as outside of
Artificial Intelligence.

7.2 Embedded Lisp
The simplicity of Lisp makes the implementation of an interpreter
an easy task and made —and continues to make— it an attractive
language to embed in an application or use it to interact with the
core mechanisms of a program.

The extendable, open-source text editor GNU Emacs uses its
own Lisp dialect called Emacs Lisp to expose functionality of the
software to the user. A small core of Emacs was written in C, but the
defining trait is its extensibility that it owes to the use of its scripting
language. Users of Emacs have embraced its free and customizable

nature, making it possible to install extensions to use Emacs as a
pdf reader6, email client7 or web browser8, among others.

The CAD9 software AutoCad uses its own Lisp dialect called
AutoLisp as its scripting language and large parts of it are written
in Lisp.

The GNU Ubiquitous Intelligent Language for Extensions or GUILE
is a scheme-based extension that makes use of Lisp’s aptitude as
an embedded language and aims to allow easy integration into any
application, thus eliminating the need to implement an own Lisp
interpreter. Projects that use GUILE include Guix (a purely-function
meta package manager), GNU Cash (a free financial management
software) and the GNU Project Debugger —also known as GDB .

7.3 Education
Naturally Lisp was taught heavily in courses on artificial intelli-
gence, but also outside of it: the popular textbook Structure and
Interpretation of Computer Programs served as a companion book
to a course at MIT with the same name starting in 1980 by Hal
Abelson and Gerald Sussman [1] and found heavy usage outside of
MIT upon release. The book uses the in-house developed Scheme
as its language for demonstrating algorithms and programming
practices.

In 2008, the course was stopped being taught using the textbook
as well as Scheme10. Despite that, it is worth mentioning that teach-
ing of the book at MIT resumed with another course in 201911 with
the younger Lisp dialect Racket.

7.4 Modern Lisps
Racket: Racket is a scheme-based Dialect that began development
under the name "PLT Scheme", until it was later renamed. It is used
as a language for teaching, includes a graphical IDE and adds useful
procedures to Scheme [5].
Clojure: Amodern dialect that has gained traction in recent years is
Clojure. Clojure is designed to run on the Java Virtual Machine and
consequently supports interoperability with Java itself. It employs
typical Lisp syntax and encourages functional programming [6].
Clasp: In spite of themany implementations of Common Lisp, there
are still new ones being developed. Clasp is an implementation that
is designed to interoperate with C++ using an LLVM backend [18].
Arc: Arc is a new dialect of Lisp that is designed for prototyping of
software and is in early release 12.

8 INFLUENCE
Many of the languages features that we introduced were in fact
inventions by Lisp. Lisp introduced first-class functions [4].

Garbage collection was an innovation by Lisp. It was described
in McCarthy’s original paper as "reclamation cycles" [13], although
internally the process was already called garbage collection [14].
Recursion as a form of functions calling themselves first appeared
in Lisp [4].

6https://github.com/politza/pdf-tools
7https://github.com/wanderlust/wanderlust
8GNU Emacs Web Wowser (EWW) package, by now a built-in
9computer-aided design
10https://mitadmissions.org/blogs/entry/the_end_of_an_era_1/ accessed 25-05-2020
11http://web.mit.edu/alexmv/6.S184/ accessed 25-05-2020
12http://arclanguage.org/

5

https://github.com/politza/pdf-tools
https://github.com/wanderlust/wanderlust
https://mitadmissions.org/blogs/entry/the_end_of_an_era_1/
http://web.mit.edu/alexmv/6.S184/
http://arclanguage.org/


8.1 Conditional Expression
Lisp was the first language to introduce conditional expressions
as the one shown in 4, while languages like Fortran still only of-
fered conditional gotos [14]. Languages later started supporting
this type of control flow with the if-else instructions that are
now ubiquitous in programming languages [4].

8.2 Object-oriented Programming
We also trace back influences from Lisp to the now common par-
adigm of object-oriented programming. According to Alan Key,
Lisp deeply influenced him during the design of Smalltalk [7]. The
success of Smalltalk on the other hand fueled incorporation of
object-oriented features into Lisp dialects. Thanks to its extensibil-
ity, Lisp turned out to be suitable for experiments for more advanced
object-oriented concepts like multiple inheritance.

Additionally, an impact on the web was left by Lisp through
the language JavaScript. Its creator, Brendan Eich, originally began
work on a browser-embedded language intended to be modeled
after Scheme [17]. Later on, a decision to make the syntax more
Java-like was made. The aftermath is a language that resembles
Java, but offers features of Scheme like closures, first-class functions
and support for a functional style of programming [17].

9 DECLINE
Having shown the areas in which Lisp excels and its wide-ranged
influence, we now need to ask the logical question of why Lisp
does not see the same amount of usage as the languages it greatly
influenced. We will explore three potential reasons and see whether
they still apply today.

9.1 Performance
An argument against Lisp for early computer hardware is to be
made in regards to performance. The resource requirements of run-
ning a Lisp program compared to languages that did not use garbage
collection, dynamic typing or an interpreter like C or Fortran was
significantly higher and thus those languages were preferred for
performance critical tasks. The datastructure of Lisp is not helping
in this cause, since a Lisp program will frequently access an ele-
ment of a large list via linear searching [11] and early Lisp had a
reputation of being inefficient for numerical computations [1].

Modern computers on the other hand, can accommodate these
requirements. Python — like Lisp — is an interpreted, dynamically
typed, garbage collected language that sees widespread usage.

9.2 Design
Through its self-contained design, Lisp was not well suited for
systems programming, resulting in increased usage of languages
like C and Fortran in that area [11].

However, the need for systems programming languages has
declined since then.

9.3 Change in needs
As mentioned in 7.3, the MIT course for Structure and Interpreta-
tion of Computer Programs was stopped in 2008 and switched the
used programming language from Scheme to Python. In a 2016 talk

[22] — on being asked for the reasons behind the switch — Gerald
Sussman remarked that the book originally was used to teach a
language of engineering that lost relevancy for today’s engineers:
While engineers in the 1980s and 1990s used well-understood parts
to build complex systems, the engineers of today more commonly
combined complex systems with small parts. In particular, the prac-
tice of simply including and combining established libraries and
frameworks to achieve the desired results arose and transformed
the needed skills for software engineering [22].

10 RELATEDWORK
In his article How Lisp Became God’s Own Programming Language
[23], Sinclair Target tries to explain how Lisp managed to stay rele-
vant and earned the reputation of a language with almost mystical
properties in programming culture. Throughout, he presents three
theories. The first concerns Lisp’s small, irreducible core language
definition. Unlike other programming languages, Lisp is axiomatic
and can be defined fully in theory with just a few special opera-
tions. The second is about the use of Lisp in the field of A.I. and
how it contributed to giving Lisp a more futuristic appearance. The
third theory attributes Lisp’s success to the textbook Structure and
Interpretation of Computer Programs [1] that we also mentioned
throughout this paper.

11 CONCLUSION
We introduced the syntax of Lisp and were able to show how the
simple structure of is not a hindrance but rather the key factor
in the deeper ideas that enable its powerful features, making it
multiparadigm in every sense of the word.

By pinpointing these features, we found that the term "Lisp
dialect" is a valid one, because a language that tries to implement
these concepts will eventually resemble Lisps foundation — either
intentionally or by accident.

We showed where Lisp’s capabilities found their application and
that the usefulness of Lisp in the early days still is present today
and that new developments are on the horizon.

We were able to trace Lisp’s influence to the major languages
that we mentioned in 2 and more by showing how its innovations
are found in them and how it helped shape whole programming
paradigms.

Finally, we took a critical look at its decline and concluded that
its loss in use can be attributed to practical and historic develop-
ments and not a shortcoming of the core of the language itself.
We determined that a language’s inertia or momentum now plays
a key role in determining the success of a language. This crucial
momentum is now picking up again as recent developments come
to fruition, fueling speculation of another rise of the Lisp program-
ming language.

REFERENCES
[1] Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of

Computer Programs (2nd ed.). MIT Press, Cambridge, MA, USA.
[2] Conrad Barski. 2011. Land of Lisp - Learn to Program in Lisp, One Game at a Time!

No Starch Press. http://nostarch.com/lisp.htm
[3] Christian Betz and Lothar Hotz. 2011. Verwendung von Lisp in KI-Projekten. KI

- Künstliche Intelligenz 26, 1 (Nov. 2011), 69–74. https://doi.org/10.1007/s13218-
011-0150-7

6

http://nostarch.com/lisp.htm
https://doi.org/10.1007/s13218-011-0150-7
https://doi.org/10.1007/s13218-011-0150-7


[4] Pascal Costanza, Richard Gabriel, Robert Hirschfeld, and Guy Steele. 2008. Lisp50:
The 50th birthday of lisp at OOPSLA 2008. 853–854. https://doi.org/10.1145/
1449814.1449882

[5] Ryan Culpepper, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi.
2019. From Macros to DSLs: The Evolution of Racket. In 3rd Summit on Advances
in Programming Languages (SNAPL 2019) (Leibniz International Proceedings in
Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krish-
namurthi (Eds.), Vol. 136. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 5:1–5:19. https://doi.org/10.4230/LIPIcs.SNAPL.2019.5

[6] Chas Emerick, Brian Carper, and Christophe Grand. 2012. Clojure Programming -
Practical Lisp for the Java World. "O’Reilly Media, Inc.", Sebastopol.

[7] Stuart Feldman. 2004. A Conversation with Alan Kay. Queue 2, 9 (Dec. 2004),
20–30. https://doi.org/10.1145/1039511.1039523

[8] John Foderaro. 1991. LISP: Introduction. Commun. ACM 34, 9 (Sept. 1991), 27.
https://doi.org/10.1145/114669.114670

[9] Paul Graham. 1993. On LISP: Advanced Techniques for Common LISP. Prentice-Hall,
Inc., USA.

[10] Paul Graham. 2001. Roots of Lisp. (May 2001). http://www.paulgraham.com/
rootsoflisp.html (retrieved on May 15, 2020).

[11] Gary D. Knott. 2017. Interpreting LISP - Programming and Data Structures. Apress,
New York.

[12] Daniel Kochmanski. 2016. Common Lisp ecosystem and the software distribution
model. http://turtleware.eu/static/talks/pkgsrcCon-2016-lisp.pdf (retrieved May
25, 2020).

[13] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM 3, 4 (April 1960), 184–195.
https://doi.org/10.1145/367177.367199

[14] John McCarthy. 1978. History of LISP. Association for Computing Machinery,
New York, NY, USA, 173–185. https://doi.org/10.1145/800025.1198360

[15] John McCarthy. 1997. Defending AI Research - A Collection of Essays and Reviews.
Cambridge University Press, Cambridge.

[16] Peter Norvig. 1992. Paradigms of artificial intelligence programming: case studies
in Common LISP. Morgan Kaufmann.

[17] Casimir Saternos. 2014. Client-Server Web Apps with JavaScript and Java - Rich,
Scalable, and RESTful. "O’Reilly Media, Inc.", Sebastopol.

[18] Christian A. Schafmeister and AlexWood. 2018. Clasp Common Lisp Implementa-
tion and Optimization (ELS2018). European Lisp Scientific Activities Association,
Article 8, 6 pages.

[19] Peter Seibel. 2005. Practical Common Lisp. Vol. 1. Apress.
[20] Guy L. Steele. 1982. An Overview of COMMON LISP (LFP ’82). Association for

Computing Machinery, New York, NY, USA, 98–107. https://doi.org/10.1145/
800068.802140

[21] Guy L. Steele and Richard P. Gabriel. 1993. The Evolution of Lisp. SIGPLAN Not.
28, 3 (March 1993), 231–270. https://doi.org/10.1145/155360.155373

[22] Gerald Jay Sussman. 2016. Flexible Systems, The Power of Generic Operations.
LispNYC. https://vimeo.com/151465912 (retrieved May 21, 2020).

[23] Sinclair Target. 2018. How Lisp Became God’s Own Programming Language.
https://twobithistory.org/2018/10/14/lisp.html

[24] D. A. Turner. 2013. Some History of Functional Programming Languages. In
Trends in Functional Programming, Hans-Wolfgang Loidl and Ricardo Peña (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–20.

7

https://doi.org/10.1145/1449814.1449882
https://doi.org/10.1145/1449814.1449882
https://doi.org/10.4230/LIPIcs.SNAPL.2019.5
https://doi.org/10.1145/1039511.1039523
https://doi.org/10.1145/114669.114670
http://www.paulgraham.com/rootsoflisp.html
http://www.paulgraham.com/rootsoflisp.html
http://turtleware.eu/static/talks/pkgsrcCon-2016-lisp.pdf
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1145/800068.802140
https://doi.org/10.1145/800068.802140
https://doi.org/10.1145/155360.155373
https://vimeo.com/151465912
https://twobithistory.org/2018/10/14/lisp.html

